- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Chatterjee, Ranojoy (1)
-
Chaudhry, Charu (1)
-
Donovan, Katherine A (1)
-
Dunne‐Dombrink, Kara (1)
-
Fan, Angela T (1)
-
Ferguson, Fleur M (1)
-
Fischer, Eric S (1)
-
Gadbois, Gillian E (1)
-
Gaylord, Clark (1)
-
Goyal, Pavitra (1)
-
Huang, Hai‐Tsang (1)
-
Jiang, Jiewei (1)
-
Klatt, Kevin C. (1)
-
Mugusi, Sabina (1)
-
Poirier, Grace J (1)
-
Rahnavard, Ali (1)
-
Sellers, William R (1)
-
Sigua, Logan H (1)
-
Smith, Emily R (1)
-
Smith, Emily R. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bifunctional molecules such as targeted protein degraders induce proximity to promote gain‐of‐function pharmacology. These powerful approaches have gained broad traction across academia and the pharmaceutical industry, leading to an intensive focus on strategies that can accelerate their identification and optimization. We and others have previously used chemical proteomics to map degradable target space, and these datasets have been used to develop and train multiparameter models to extend degradability predictions across the proteome. In this study, we now turn our attention to develop generalizable chemistry strategies to accelerate the development of new bifunctional degraders. We implement lysine‐targeted reversible‐covalent chemistry to rationally tune the binding kinetics at the protein‐of‐interest across a set of 25 targets. We define an unbiased workflow consisting of global proteomics analysis, IP/MS of ternary complexes and the E‐STUB assay, to mechanistically characterize the effects of ligand residence time on targeted protein degradation and formulate hypotheses about the rate‐limiting step of degradation for each target. Our key finding is that target residence time is a major determinant of degrader activity, and this can be rapidly and rationally tuned through the synthesis of a minimal number of analogues to accelerate early degrader discovery and optimization.more » « lessFree, publicly-accessible full text available January 27, 2026
-
Rahnavard, Ali; Chatterjee, Ranojoy; Wen, Hui; Gaylord, Clark; Mugusi, Sabina; Klatt, Kevin C.; Smith, Emily R. (, Journal of Translational Medicine)Abstract Multi-omics approaches have been successfully applied to investigate pregnancy and health outcomes at a molecular and genetic level in several studies. As omics technologies advance, research areas are open to study further. Here we discuss overall trends and examples of successfully using omics technologies and techniques (e.g., genomics, proteomics, metabolomics, and metagenomics) to investigate the molecular epidemiology of pregnancy. In addition, we outline omics applications and study characteristics of pregnancy for understanding fundamental biology, causal health, and physiological relationships, risk and prediction modeling, diagnostics, and correlations.more » « less
An official website of the United States government
